Object Detection by Contour Segment Networks

نویسندگان

  • Vittorio Ferrari
  • Tinne Tuytelaars
  • Luc Van Gool
چکیده

We propose a method for object detection in cluttered real images, given a single hand-drawn example as model. The image edges are partitioned into contour segments and organized in an image representation which encodes their interconnections: the Contour Segment Network. The object detection problem is formulated as finding paths through the network resembling the model outlines, and a computationally efficient detection technique is presented. An extensive experimental evaluation on detecting five diverse object classes over hundreds of images demonstrates that our method works in very cluttered images, allows for scale changes and considerable intra-class shape variation, is robust to interrupted contours, and is computationally efficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contours Extraction Using Line Detection and Zernike Moment

Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...

متن کامل

Contour Segment Matching by Integrating Intra and Inter Shape Cues of Objects

In this paper we propose an algorithm for contour-based object detection in cluttered images. Contour of an object shape is approximated as a set of line segments and object detection is framed as matching contour segments of an image (i.e.,an edge image) to a boundary model of an object (i.e., a line drawing). Local shape is abstracted as a group of k-adjacent segments. We use a multi-level sh...

متن کامل

Contrast-Oriented Deep Neural Networks for Salient Object Detection

Deep convolutional neural networks have become a key element in the recent breakthrough of salient object detection. However, existing CNN-based methods are based on either patchwise (region-wise) training and inference or fully convolutional networks. Methods in the former category are generally timeconsuming due to severe storage and computational redundancies among overlapping patches. To ov...

متن کامل

Multi-stage Contour Based Detection of Deformable Objects

We present an efficient multi stage approach to detection of deformable objects in real, cluttered images given a single or few hand drawn examples as models. The method handles deformations of the object by first breaking the given model into segments at high curvature points. We allow bending at these points as it has been studied that deformation typically happens at high curvature points. T...

متن کامل

Localizing Polygonal Objects in Man-Made Environments

Object detection is a significant challenge in Computer Vision and has received a lot of attention in the field. One such challenge addressed in this thesis is the detection of polygonal objects, which are prevalent in man-made environments. Shape analysis is an important cue to detect these objects. We propose a contour-based object detection framework to deal with the related challenges, incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006